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Need for large-scale energy storage Project goal

Integrating renewable energy In this project, the electrode 3D microstructure will be
technologies in to the grid is optimized employing a combination of computer aided-design,
necessary to enable a sustainable Em fabrication, and operando characterization (Figure 4).
energy economy. However, their = |
Intrinsic intermittency (Figure 1) E/W
motivates the development of low- Solar
cost, large-scale energy storage /\ Computer aided-design Fabrication Characterization
systems, in the pursuit of ﬁ||ing the 0 e; 1'2 1'8 Y Figure 4: Schematic representation of the computer-to-battery approach.
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| of the electrode microstructure with increasing level of detall
Redox flow batteries (Figure 5). These learnings are leveraged for the bottom-up

design of optimal electrodes with improved RFB performance.
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Computer aided-design

Redox flow batteries (RFBs) (Figure 2) are rechargeable
electrochemical reactors that are promising for grid storage
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due to the possibility to decouple energy (i.e. tank volume) and
power (l.e. reactor size), facilitating their large-scale
deployment?. Load S
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Figure 5: Overview of various multiphysics simulations with increasing complexity.

Operando Characterization

Bipolar o By characterizing the electrodes in a flow cell platform, the key
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1 1 Surent properties and the main losses of the electrodes are obtained
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frame (Figure 6), which can be used as input for the multiphysics
Figure 2: Schematic diagram of a redox flow battery. simulations to increase their performance.
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Key propertles. [ S— T T === Figure 6: iRg-corrected cell potential at 1.5 cm s electrolyte velocity for the SGL carbon
e Surface area T Z. paper and carbon cloth electrode, shown in the corresponding SEM images. A single
QO electrolyte cell with an organic electrolyte was used.
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